
Informing Science Challenges to Informing Clients: A Transdisciplinary Approach June 2001

HHooww VViissuuaall BBaassiicc EEnntteerreedd tthhee CCuurrrriiccuulluumm aatt aann
AAuussttrraalliiaann UUnniivveerrssiittyy:: AAnn AAccccoouunntt IInnffoorrmmeedd bbyy

IInnnnoovvaattiioonn TTrraannssllaattiioonn

Arthur Tatnall
Victoria University, Australia

Bill Davey
RMIT University, Australia

Arthur.Tatnall@vu.edu.au Bill.Davey@rmit.edu.au

Abstract
In this paper the authors relate an example of an approach to conceptualizing curriculum innovation based on Innovation Translation, informed by
Actor-Network Theory (ANT). This approach has an advantage over other innovation models in allowing the researcher to concentrate on just those
aspects of the innovation that led to its adoption in a particular form, rather than relying on the explanatory power of its supposedly innate charac-
teristics. The paper briefly outlines the theory of innovation translation, and actor-network theory, and describes an instance of how this theory can
be applied to describing an information systems curriculum innovation. This example shows the advantages of innovation translation over other
ways of viewing curriculum change.

Keywords: Information systems, curriculum, innovation, actor-network theory

Innovation and Change in Information
Systems Curricula

That information systems (IS) curricula are under constant
pressure to change is well known to all those involved in
their delivery. The curriculum literature has a lot to do with
innovation but makes little mention of the mechanisms by
which innovation might occur. The adoption of Visual Ba-
sic into the IS curriculum of the Australian University de-
scribed in this paper, was not just a minor curriculum
change in which one programming language replaced an-
other similar language, but represented an entirely new and
different approach to programming. The dictionary defines
an innovation as occurring when something new or differ-
ent is introduced, and the adoption of Visual Basic at this
university can thus certainly be considered as an innova-
tion. This paper will examine the detail of how this innova-
tion occurred.

Many of the reported studies on curriculum innovation are
based on research, development and dissemination models
(Havelock, 1971). Relying on logical and rational deci-

sions, change models of this type depend on the use of
convincing arguments based on programs of research. They
posit a rational and orderly transition from research to de-
velopment to diffusion to adoption (Kaplan, 1991), and it is
unlikely that this approach has much relevance to univer-
sity curricula (Tatnall, 2000). Problem solving models rep-
resent another approach to conceptualizing curriculum
change in which this is seen as due to perceived educa-
tional need. Also a quite rational approach (Nordvall,
1982) they involve searching for alternative solutions, of-
ten by looking at what colleagues with similar interests are
doing but sometimes by other forms of research, in an at-
tempt to find a solution to the educational problem. Change
is considered to occur in stages where needs are first identi-
fied and articulated as problems before solutions are
sought, selected and applied.

An alternative view of innovation is proposed in actor-
network theory (ANT) the cornerstone of which is transla-
tion (Law, 1992), which can be defined as: “... the means
by which one entity gives a role to others.” (Singleton &
Michael, 1993 :229). This paper briefly describes the the-
ory of innovation translation and examines an extended
example of its use in explaining information systems cur-
riculum change.

Innovation Translation and Actor-
Network Theory

A common approach to researching innovation in disci-
plines such as Information Systems is to focus on the tech-

Material published as part of this proceedings, either on-line or in print,
is copyrighted by the author with permission granted to the publisher of
Informing Science for this printing. Permission to make digital or paper
copy of part or all of these works for personal or classroom use is
granted without fee provided that the copies are not made or distributed
for profit or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is permissible to
abstract these works so long as credit is given. To copy in all other
cases or to republish or to post on a server or to redistribute to lists
requires specific permission from the author.

mailto:Arthur.Tatnall@vu.edu.au
mailto:Bill.Davey@rmit.edu.au

 Arthur Tatnall & Bill Davey

 511

nical aspects of an innovation, and to treat ‘the social’ as
the context in which its development and adoption take
place (Tatnall & Gilding, 1999). Approaches of this type
assume that outcomes of technological change are attribut-
able to the ‘technological’ rather than the ‘social’ (Grint &
Woolgar, 1997). At the other extreme social determinism
holds that relatively stable social categories can be used to
explain technical change (Law & Callon, 1988) and con-
centrates on the investigation of social interactions, relegat-
ing the technology to context; to something that can be
bundled up and forgotten. This bundling means that fixed
and unproblematic properties or ‘essences’ can then be as-
signed to the technology and used in any attempted expla-
nation of change.

An important paradigm in innovation research is that of
innovation diffusion: most studies of innovation in infor-
mation systems and education making use of this approach.
Innovation diffusion (Rogers, 1995) is based on the notion
that technological innovations embody ‘information’: some
capacity or ‘essence’ that is largely responsible for deter-
mining their rate of adoption. A significant problem with
an essentialist paradigm like this arises when a researcher
tries to reconcile the views of all parties involved in the
innovation. The difficulty is that people often see different
‘essential attributes’ in any specific technological or human
entity, making it difficult to identify and settle on the ones
that allegedly were responsible for the diffusion.

Rather than relying on some ‘inner technological logic’,
Brey (1997) proposes that technological change is best un-
derstood by reference to technological controversies, dis-
agreements and difficulties with which the actors involved
in the change are concerned. In a small step from this, Ac-
tor-Network Theory (ANT) considers both social and tech-
nical determinism to be flawed and proposes instead a so-
cio-technical account (Callon, 1999; Latour, 1986; Law &
Callon, 1988) in which neither social nor technical posi-
tions are privileged. It offers the notion of heterogeneity to
describe socio-technical projects as this then avoids ques-
tions of: ‘is it social?’ or ‘is it technical?’ as missing the
point, which should be: “is this association stronger or
weaker than that one?” (Latour, 1988b :27). In ANT an
actor is any human or non-human entity that is able to
make its presence individually felt (Law, 1987) by the other
actors. An actor is made up only of its interactions with
these other actors, and Law (1992) notes that an actor thus
consists of an association of heterogeneous elements con-
stituting a network.

To address the need to treat both human and non-human
actors fairly and in the same way, actor-network theory is

based upon three principles: agnosticism, generalized
symmetry and free association (Callon, 1986b). In sum-
mary, ANT attempts impartiality towards all actors in con-
sideration, whether human or non-human, and makes no
distinction in approach between the social, the natural and
the technological. Actor-network theory, or the ‘sociology
of translations’ (Callon, 1986b; Law, 1992), is concerned
with studying the mechanics of power as this occurs
through the construction and maintenance of networks
made up of both human and non-human actors.

Latour (1986), one of the main proponents of ANT, argues
that in an innovation translation model the movement of an
innovation through time and space is in the hands of peo-
ple, each of whom may react to it in different ways. They
may accept it, modify it, deflect it, betray it, add to it, ap-
propriate it, or let it drop. The adoption of an innovation
comes as a consequence of the actions of everyone in the
chain of actors who has anything to do with it. Further-
more, each of these actors shapes the innovation to their
own ends and instead of a process of transmission we have
a process of continuous transformation (Latour, 1996)
where faithful acceptance involving no changes is a rarity.
The key to innovation is the creation of a powerful enough
consortium of actors to carry it through, and when an inno-
vation fails to be taken up this can be considered to reflect
on the inability of those involved to construct the necessary
network of alliances amongst the other actors (McMaster,
Vidgen, & Wastell, 1997). Getting an innovation accepted
calls for strategies aimed at the enrolment of others, and
Latour maintains that this is done by ‘interesting’ others
and then getting them to follow our interests, so becoming
indispensable to them. This process is facilitated if other
possibilities are first blocked off.

Mechanisms of Translation

An actor-network is configured by the enrolment of both
human and non-human actors, and this is done by means of
a series of negotiations in a process of re-definition in
which one set of actors seeks to impose definitions and
roles on others. Translation can be regarded as a means of
obliging some entity to consent to a ‘detour’ (Callon,
1986a) that takes it along a path determined by some other
entity. Law (1987) uses the term ‘heterogeneous engineer’
to describe the entity that designs and creates these detours.

The process of translation has four aspects or ‘moments’
(Callon, 1986b), the first of which is known as problemati-
sation. In this stage a group of one or more key actors at-
tempts to define the nature of the problem and the roles of
other actors so that these key actors are seen as having the

How Visual Basic Entered the Curriculum of an Australian University

 512

answer, and being indispensable to the solution of the prob-
lem. It involves suggesting an equivalence (Law, 1997)
between two problems: the one proposed by the enrollers
and the other by those being enrolled, and requiring those
who wish to solve the problem to accept the solution pro-
posed by the other. In other words, the problem is re-
defined, or translated, in terms of solutions offered by
these actors who then attempt to establish themselves as an
‘obligatory point of passage’ (Callon, 1986b) which must
be negotiated as part of its solution. They attempt to per-
suade the other actors that they all have the same interests
and that the answers to their own problems lie in the solu-
tions proposed by the persuaders. To pass through the
obligatory passage point the other actors must accept a set
of conventions, rules, assumptions and ways of operating
laid down by the heterogeneous engineer. If this happens
then the formation of a stable network will ultimately re-
sult.

The second moment is interessement which is a series of
processes that attempt to impose the identities and roles
defined in the problematisation on the other actors. It
means interesting and attracting an entity by coming be-
tween it and some other entity. Here the enrollers attempt
to lock the other actors into the roles proposed for them
and to gradually dissolve existing networks, replacing them
by a network created by the enrollers themselves.

If the interessement is successful then the third moment,
enrolment will follow through a process of coercion, seduc-
tion, or consent (Grint & Woolgar, 1997), leading to the
establishment of a solid, stable network of alliances. En-
rolment, however, involves more than just one set of actors
imposing their will on others; it also requires these others
to yield.

Finally, mobilization occurs as the proposed solution gains
wider acceptance and an even larger network of absent en-
tities is created through some actors acting as spokesper-
sons for others. Mobilization requires that these supposed
spokespersons are properly able to represent the others and
will neither betray them nor be betrayed by them (Callon,
1986b). Of course, not all entities will just willingly con-
sent to the proposed detours, and in understanding the path
taken by an innovation it is necessary to examine the resis-
tance offered by the actors it is able to mobilize and those it
rejects or that reject it (Latour, 1991).

To define the relationship between themselves many actors
make use of intermediaries such as texts, technical arti-
facts, humans with specific skills, and money (Callon,

1991). These intermediaries then constitute the ‘form and
substance’ of the interactions.

Use of Actor-Network Theory

Examples in the literature show how actor-network theory
has been used to investigate the success of a number of
technological innovations and, in particular, to describe a
number of notable failures. The list that follows gives an
indication of the wide range of such studies.

Law (1986; 1987) has used actor-network theory to de-
scribe the successful Portuguese exploration down the Af-
rican coast to trade in India, and the unsuccessful TSR2
project (Law, 1988; Law & Callon, 1988; Law & Callon,
1992) to build a revolutionary military aircraft in Britain.
Callon (1986b) has used it to describe the ‘domestication’
of scallops in St Brieuc Bay, Brittany, and the failure of the
Renault car company to develop a successful electric car in
France (Callon, 1986a).

Singleton and Michael (1993) have written of the part
played by general practitioners in the UK Cervical Screen-
ing Program. Grint and Woolgar (1997) have used ANT,
and other approaches, to explain the Luddite rebellion and
the events surrounding introduction of weaving technology
into the United Kingdom in the early nineteenth century.

Latour (1988a) has used actor-network theory to discuss
the achievements of Louis Pasteur, some of the processes
undertaken by scientists in their research and their labora-
tories (Latour, 1987), the simultaneous invention of the
Kodak camera and the mass market for amateur photogra-
phy (Latour, 1991), and analysis of the conception and ul-
timate failure of the revolutionary Parisian public transpor-
tation system known as Aramis (Latour, 1996).

One of the things that many people find a little odd about
reading accounts making use of actor-network theory is the
use of a style of language that has been designed to give
agency to the non-human actors. As the language can
sometimes be off-putting it could even be considered as a
limitation of this approach.

In this paper we have attempted to point out how and why
language is used in this way. Another difficulty with ANT
is that it has no methods specific to itself, making use of
many of the methods, but not the philosophical stance,
used in methodologies such as ethnography and case study
research.

 Arthur Tatnall & Bill Davey

 513

Data for the study was collected in the form of relevant
curriculum documents, and a series of interviews of the
academic and support staff involved. Data collection and
analysis were undertaken by the authors.

Innovation in the Information Systems
Curriculum at Phillip University

While the research reported in this paper is factual, the
names of the academic staff involved, and of the university,
have been changed. The discussion that follows constitutes
an actor-network-informed account of the adoption of Vis-
ual Basic in two information systems subjects at Phillip
University. It describes how, in the course of attempting to
solve a programming problem unconnected with his teach-
ing Fred, an IS academic at the university, discovered Vis-
ual Basic, was enrolled by it, and began to make use of it in
his teaching. It examines how Visual Basic managed to
redefine business programming at Phillip University from
the approach offered by character-based procedural pro-
gramming languages, to its own form of graphical, event-
driven programming. We have used an actor-network ap-
proach to describe two key moments in this curriculum
change:

• how Fred found out about Visual Basic, and

• how he then became convinced that VB’s very differ-
ent style of programming should be adopted in his
teaching.

Problems when Programming with Graphics
in MS-DOS

Fred recollects that his first experience of Visual Basic was
unconnected with his university teaching and occurred
when he was working privately with his son George on a
small commercial programming project in an MS-DOS
environment. The project was for a system to store cus-
tomer records for a local garage, and was to be pro-
grammed in Microsoft QuickBasic. One aspect of the pro-
ject required the display of a variety of different sized
fonts, and some pictures, on the computer screen. But dis-
playing anything other than standard text presented diffi-
culties when using an MS-DOS programming language as
each different type and resolution of computer screen re-
quired a different MS-DOS screen-driver. The purpose of
these screen-drivers was to achieve cooperation between
the computer and a specific type of screen and to induce
the appropriate parts of the screen to change luminescence
according to the wishes of the program running on the

computer; to act as an ‘intermediary’ (Callon, 1991 :134)
to get the screen and the program working together.

There was, however, no single standard for computer
screens and each of the different type required specific
screen-drivers to operate correctly. Each screen type jeal-
ously guarded its own standards, and steadfastly refused to
listen to commands coming from screen-drivers intended
for other types of screen. (The language used in this ac-
count reflects that used in actor-network theory and may
appear a little strange to anyone unfamiliar with ANT. This
expression exemplifies how ANT grants agency to non-
human actors.) Writing a program in a language like
QuickBasic required locating and loading the correct
screen-driver for the type of screen that would be used
when the program was run, and persuading it to operate as
required. Differences in screen-drivers that the program
had to take note of meant that it was very difficult to write
a program that would make different fonts, or a picture,
look the same on each type of screen.

A programmer needed to enroll these screen-drivers, and
hence the associated display screens, as allies. Failure to do
so meant that cooperation between the program and the
display screen would not follow, and the program would
not work as intended. One simple solution was for the pro-
grammer to specify in advance the screen type and resolu-
tion required for use by the program; to require use of a
specific-screen driver as an ‘obligatory passage point’
(Callon, 1986b). The user would then have to obtain a
monitor with this type of screen before using the program.
There was no great difficulty in ‘forcing’ the enrolment of
specific monitor screens in this way, but it did not solve the
general problem of persuading other screen-types and
screen-drivers to voluntarily come along and be part of the
solution as well. Defining the screen problem in this way;
what Callon (1986b) calls problematisation would then
have required convincing the program’s users that, as their
problem could be solved by purchasing the ‘right’ monitor,
a general solution that would solve this problem for all
screens was of no relevance to them.

Unfortunately, enrolling the screen-drivers as allies in this
way was not an easy task as these actors each saw their
purpose as providing a solution to the specific problem of
mapping text and graphics onto the particular screen type
they represented, not as working together to do this for all
types of display screen. The single screen-type problemati-
sation offered by the screen-drivers was soon to be changed
by Microsoft Windows, but the MS-DOS version of Visual
Basic that Fred was about to come across was also able to
achieve the same end. It was able to ensure the cooperation

How Visual Basic Entered the Curriculum of an Australian University

 514

of the screen-drivers in providing consistent output for
each type of display screen by enrolling these actors and
making them fall into line and do what they were told by
the programmer.

Fred discovered that Visual Basic for MS-DOS had a sin-
gle set of graphics-drivers that worked as ‘calling routines’
to the operating system rather than going directly to the
screen devices. Visual Basic for MS-DOS had enrolled
these screen-drivers by incorporating them as a part of its
own actor-network, and when Visual Basic for MS-DOS
was installed on the hard disk it automatically installed all
the device-drivers ready for use with a variety of different
display screens. These drivers had been convinced of the
advantages of working with it, and been enrolled into a
new network: Visual Basic for MS-DOS, that contained
both a programming language and other programming
elements including device-drivers that constituted an inte-
grated development environment. It would now no longer
be necessary for programmers to make all these associa-
tions and connections themselves.

This problematisation of programming was enough in-
ducement to Fred to give Visual Basic a try. VB’s re-
definition of programming in which a programming lan-
guage was granted the ability to call graphics-drivers
through the MS-DOS operating system interested (Latour,
1986) both George and Fred. VB’s problematisation of
graphics programming appeared to them to fit well with
their commercial programming problem in the way that
they saw it. The solution suggested by VB for MS-DOS
offered considerable inducement or, as Callon (1986b)
would say, interessement for Fred to move away from
QuickBasic and to adopt Visual Basic in its place. It was,
however, not every aspect of VB that had been significant
here, just its ability to work well with graphics screens.
This translation of VB as a graphics programming lan-
guage (Callon, 1986b) had successfully enrolled Fred to its
view of programming.

A consequence, unexpected by Fred who had always been
reluctant to use Microsoft Windows, was that he soon be-
gan to like the visual aspects of VB and the different type
of programming style it represented. While George’s main
interest in Visual Basic had been in solving the specific
graphics display problem, Fred began to see another side to
it that might be relevant to his teaching, leading to the for-
mation of a ‘Fred + VB for MS-DOS’ hybrid (Latour,
1993). Fred liked the fact that VB allowed the programmer
to put a program together in a short time and one, what is
more, that looked really good on the screen.

VB problematised (Callon, 1986b) programming tasks
quite differently to other languages Fred had been used to,
by using drag and drop controls and event-driven code in
place of a character-based environment and the use of pro-
cedural code. Although Fred had always enjoyed the chal-
lenge represented by programming, he found that using VB
was ‘more fun’ than normal programming.

Exploration: Teaching Experiments with
Visual Basic

In what can be described as the second key moment of this
account, Fred then set out to try to interest others in using
Visual Basic. He began with his students, approaching this
task cautiously as, although he had been enthused by VB
and saw great advantages in its use, he still had to convince
himself that it was teachable, and right for his students.

By offering a new and, what seemed to him, better solution
to his technical problem with graphics screens VB had en-
rolled Fred to its view of programming and he now had to
work out what this meant to his teaching. Choice of VB as
a solution to the technical problem had created an educa-
tion dilemma for Fred: should he try to introduce Visual
Basic into his course, and if so, how? Fred was impressed
with VB’s consistent visual environment and the speed
with which VB applications could be developed. He was,
however, not sufficiently sure of how the students would
take to it to propose the creation of a new subject to teach
Visual Basic. He was also not sure whether he could de-
velop enough materials for its use and so decided instead to
try it out first in existing subjects.

At the time that his discovery of Visual Basic for MS-DOS
was going on, Fred’s teaching at Phillip involved pro-
gramming in Cobol on the VAX and Pascal in MS-DOS.
He remarked that in writing a program in either of these
languages, everything you wanted to add to a form to dis-
play to the user had to be instigated by a separate line of
program code.

Fred described how he first tried out Visual Basic as a
screen prototyping tool in the subject ‘Business Informa-
tion Systems-A’. He did this not just by accepting VB as
Microsoft had designed it, but by translating (Callon,
1986b) it from a ‘programming language and visual pro-
gramming environment’ into a ‘screen prototyping tool’.
The prototyping topic in this subject had always been hard
to teach as, without suitable prototyping tools to use in the
student labs, it could not be handled practically. Fred as-
signed Visual Basic a new role in the demonstration of
screen prototyping, and VB accepted this new role. Reas-

 Arthur Tatnall & Bill Davey

 515

signment of Visual Basic’s role was a good deal easier than
it sounds and just meant completing only the first step of
program development in VB by using its visual interface to
create the screen that would be seen by the user at runtime,
but not proceeding to the stage of adding program code.
This translation meant leaving out most of VB’s object and
event-driven programming features and introducing just its
visual interface. It was a translation that reduced the scope
of Visual Basic to something that was appropriate to this
subject, making it possible to use VB in this role.

Fred indicated that he thought that any easy way to convert
this subject from pure theory into something more practical
had to be an improvement. The slight change in the prob-
lem definition that allowed this was seen as highly desir-
able both by the teacher and the students. The translation of
VB to hide its programming features and leave just its vis-
ual design interface enabled it to be of use here. So where
CASE tools and the VAX screen painter had been unable to
offer a redefinition of ‘Business Information Systems-A’
that would allow their enrolment, Visual Basic was able to
do so.

One difficulty though was that Fred was then far from ex-
pert in using or teaching VB. Following the old adage that
‘the best way to learn something is to teach it’, Fred’s own
learning about the capabilities and limitations of Visual
Basic, and how it could be used in business programming,
proceeded in parallel with his experiments in teaching with
it (Latour, 1987). Fred solved his own problems in dealing
with the new design and programming paradigms required
by Visual Basic by working through them with his stu-
dents. The hybrid (Latour, 1993) had now enlarged to be-
come ‘Fred + VB for MS-DOS + students’.

Before being adopted in this subject, however, Visual Basic
‘the programming language’, had undergone a translation
to become Visual Basic ‘the interface design and prototyp-
ing tool’; with the hybrid of Fred and the students attached.
Without this translation Visual Basic could not have been
adopted as many of its attributes were not at all relevant for
use here and could get in the way. What Fred required was
a simplified ‘cut-down’ version of Visual Basic that re-
moved all of its programming and object-based features
and left only its abilities in user-interface design. This
translation allowed VB to enter the curriculum.

The next semester Fred tried out the Windows version of
Visual Basic in another subject: ‘Operating Systems Pro-
gramming’. Previously this subject had concentrated on
programming within a Unix environment with students
using Unix commands and writing scripts for operating

systems procedures. With the growing importance of Mi-
crosoft Windows, Fred justified VB’s inclusion here to
write operating system extensions for Windows instead of
Unix.

After using it for a while Fred noted Visual Basic’s low
threshold for relative beginners; students with little or no
experience of programming could soon learn to make
enough use of VB to produce impressive looking pro-
grams. Fred had modified, by another small translation, the
definition of ‘Operating Systems Programming’ from a
subject originally intended to examine the Unix operating
system, to one that also looked at Microsoft Windows
through the use of VB. Visual Basic was adopted after it
underwent a different translation, this time to become Vis-
ual Basic, the ‘language for Windows operating systems
programming’. In this, and the previous instance of proto-
typing with Visual Basic, we begin to see the emergence of
two new ‘Fred + students + VB for MS-DOS’ hybrids
(Latour, 1993) that had been mobilized to speak for and
advocate the use of appropriate aspects of Visual Basic to
solve the problems of prototyping and operating systems
programming.

Innovation Translation as a Means of
Understanding Change

There were now two different translations of Visual Basic
in Phillip University’s curriculum, rather than Visual Basic
itself as it might have been envisaged by Microsoft. Nei-
ther of these represented all aspects of Visual Basic; they
were translations of the original that used only certain as-
pects of it and so enabled its adoption in the curriculum. It
could appropriately be said that it was not Visual Basic as
such that was adopted, but rather ‘VB the screen prototyp-
ing tool’ and ‘VB the language for Windows operating sys-
tems programming’.

Innovation translation offers an approach to theorizing in-
novation that has the advantage of being able to single out
and concentrate on those aspects of an innovation that
really do influence whether or not it is adopted in each
specific case, rather than just globally. While other ap-
proaches, such as innovation diffusion, need to consider
supposed innate properties of an innovation that are
thought to determine its adoption, innovation translation
does not have to resort to such essentialist notions. An in-
novation translation approach, informed by actor-network
theory, avoids the need to consider the social and the tech-
nical, and thus human and non-human actors, in different
ways. This makes innovation translation very useful in

How Visual Basic Entered the Curriculum of an Australian University

 516

modeling the progress of an information systems curricu-
lum innovation.

Actor-network theory avoids use of any notions of cause
and effect, choosing instead to highlight how the various
actors (both human and non-human) interact, and how
these interactions may lead to the formations of stable net-
works. It would thus be inappropriate to look too hard at
how this account might point to how other examples of IS
curriculum change may occur, except to point out how IS
curriculum change will typically involve a series of com-
plex interactions between human and non-human actors.
The authors contend that ANT can be applied most suc-
cessfully to identifying and illustrating these complex in-
teractions.

References
Brey, P. (1997). Philosophy of Technology meets Social Constructiv-

ism. Society of Philosophy & Technology, 2(3-4).

Callon, M. (1986a). The Sociology of an Actor-Network: The Case of
the Electric Vehicle. In Callon, M., Law, J., & Rip, A. (Eds.), Map-
ping the Dynamics of Science and Technology (pp. 19-34). London:
Macmillan Press.

Callon, M. (1986b). Some Elements of a Sociology of Translation: Do-
mestication of the Scallops and the Fishermen of St Brieuc Bay. In
Law, J. (Ed.), Power, Action & Belief. A New Sociology of Knowl-
edge? (pp. 196-229). London: Routledge & Kegan Paul.

Callon, M. (1991). Techno-Economic Networks and Irreversibility. In
Law, J. (Ed.), A sociology of monsters. Essays on power, technol-
ogy and domination (pp. 132-164). London: Routledge.

Callon, M. (1999). Actor-Network Theory - The Market Test. In Law, J.
& Hassard, J. (Eds.), Actor Network Theory and After (pp. 181-
195). Oxford: Blackwell Publishers.

Grint, K., & Woolgar, S. (1997). The Machine at Work - Technology,
Work and Organisation. Cambridge: Polity Press.

Havelock, R. (1971). Planning for Innovation Through Dissemination
and Utilization of Knowledge (Paper). Ann Arbor: Center for Re-
search on Utilization of Scientific Knowledge, Institute for Social
Research, University of Michigan.

Kaplan, B. (1991). Models of Change and Information Systems Re-
search. In Nissen, H.-E., Klein, H. K., & Hirschheim, R. (Eds.), In-
formation Systems Research: Contemporary Approaches and
Emergent Traditions (pp. 593-611). Amsterdam: Elsevier Science
Publishers.

Latour, B. (1986). The Powers of Association. In Law, J. (Ed.), Power,
Action and Belief. A new sociology of knowledge? Sociological Re-
view monograph 32 (pp. 264-280). London: Routledge & Kegan
Paul.

Latour, B. (1987). Science in Action: How to Follow Engineers and
Scientists Through Society. Milton Keynes: Open University Press.

Latour, B. (1988a). The Pasteurization of France (Alan Sheridan and
John Law, Trans.). Cambridge, Ma.: Harvard University Press.

Latour, B. (1988b). The Prince for Machines as well as for Machina-
tions. In Elliott, B. (Ed.), Technology and Social Process (pp. 20-
43). Edinburgh: Edinburgh University Press.

Latour, B. (1991). Technology is society made durable. In Law, J. (Ed.),
A Sociology of Monsters. Essays on Power, Technology and Domi-
nation (pp. 103-131). London: Routledge.

Latour, B. (1993). We have never been modern (Catherine Porter,
Trans.). Hemel Hempstead: Harvester Wheatsheaf.

Latour, B. (1996). Aramis or the Love of Technology. Cambridge, Ma:
Harvard University Press.

Law, J. (1986). On the methods of long distance control: vessels,
navigation and the Portuguese route to India. In Law, J. (Ed.),
Power, Action and Belief: A New Sociology of Knowledge? (pp.
234-263). London: Routledge & Kegan Paul.

Law, J. (1987). Technology and Heterogeneous Engineering: The Case
of Portuguese Expansion. In Bijker, W. E., Hughes, T. P., & Pinch,
T. J. (Eds.), The Social Construction of Technological Systems:
New Directions in the Sociology and History of Technology (pp.
111-134). Cambridge, Ma: MIT Press.

Law, J. (1988). The Anatomy of a Socio-technical Struggle: the Design
of the TSR2. In Elliott, B. (Ed.), Technology and Social Process
(pp. 44-69). Edinburgh: Edinburgh University Press.

Law, J. (1992). Notes on the Theory of the Actor-Network: Ordering,
Strategy and Heterogeneity. Systems Practice, 5(4), 379-393.

Law, J. (1997). Topology and the Naming of Complexity (Draft), Actor
Network and After Workshop.
http://www.lancaster.ac.uk/sociology/stslaw3.html, 31 July 1997:
Department of Sociology, Lancaster University.

Law, J., & Callon, M. (1988). Engineering and Sociology in a Military
Aircraft Project: A Network Analysis of Technological Change.
Social Problems, 35(3), 284-297.

Law, J., & Callon, M. (1992). The Life and Death of an Aircraft: A
Network Analysis of Technical Change. In Bijker, W. & Law, J.
(Eds.), Shaping Technology/Building Society: Studies in Sociologi-
cal Change (pp. 21-52). Cambridge, Ma.: MIT Press.

McMaster, T., Vidgen, R. T., & Wastell, D. G. (1997, 9-12 August,
1997). Towards an Understanding of Technology in Transition.
Two Conflicting Theories. Paper presented at the Information Sys-
tems Research in Scandinavia, IRIS20 Conference, Hanko, Nor-
way.

Nordvall, R. C. (1982). The process of change in higher education insti-
tutions (ERIC/AAHE Research Report 7). Washington DC: Ameri-
can Association for Higher Education.

 Arthur Tatnall & Bill Davey

 517

Rogers, E. M. (1995). Diffusion of Innovations. (4th ed.) New York: The
Free Press.

Singleton, V., & Michael, M. (1993). Actor-Networks and Ambiva-
lence: General Practitioners in the UK Cervical Screening Pro-
gramme. Social Studies of Science, 23, 227-264.

Tatnall, A. (2000). Innovation and Change in the Information Systems
Curriculum of an Australian University: a Socio-Technical Per-
spective. Central Queensland University, Rockhampton.

Tatnall, A., & Gilding, A. (1999). Actor-Network Theory and Informa-
tion Systems Research. Paper presented at the 10th Australasian
Conference on Information Systems (ACIS), Wellington.

Biographies
Arthur Tatnall is a senior lecturer in the School of Informa-
tion Systems at Victoria University in Melbourne, Austra-

lia. His research interests include innovation and change
management, information systems curriculum develop-
ment, Visual Basic programming, project management and
electronic commerce.

Bill Davey is a senior lecturer in the School of Business
Information Technology at RMIT University, Melbourne,
Australia. His research interests involve methodologies for
systems analysis and systems development, information
systems curriculum, and Visual Basic programming.

Arthur and Bill have co-operated and worked together on
many occasions. They have co-authored a number of pa-
pers, book chapters, and textbooks relating to information
systems and IS curriculum.

	Abstract
	I
	Innovation and Change in Information Systems Curricula
	Innovation Translation and Actor-Network Theory
	Mechanisms of Translation
	Use of Actor-Network Theory

	Innovation in the Information Systems Curriculum at Phillip University
	Problems when Programming with Graphics in MS-DOS
	Exploration: Teaching Experiments with �Visual Basic

	Innovation Translation as a Means of Understanding Change
	References
	Biographies

